
Point Cloud Resampling Using Centroidal Voronoi Tessellation Methods

Zhonggui Chena,c, Tieyi Zhanga, Juan Caob,c,∗, Yongjie Jessica Zhangc, Cheng Wanga

aFujian Key Laboratory of Sensing and Computing for Smart City, School of Information Science and Engineering, Xiamen University, Xiamen 361000, China
bSchool of Mathematical Sciences, Xiamen University, Xiamen 361000, China

cDepartment of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA

Abstract

This paper presents a novel technique for resampling point clouds of a smooth surface. The key contribution of this paper is the
generalization of centroidal Voronoi tessellation (CVT) to point cloud datasets to make point resampling practical and efficient. In
particular, the CVT on a point cloud is efficiently computed by restricting the Voronoi cells to the underlying surface, which is
locally approximated by a set of best-fitting planes. We also develop an efficient method to progressively improve the resampling
quality by interleaving optimization of resampling points and update of the fitting planes. Our versatile framework is capable
of generating high-quality resampling results with isotropic or anisotropic distributions from a given point cloud. We conduct
extensive experiments to demonstrate the efficacy and robustness of our resampling method.

Keywords: point cloud, resampling, centroidal Voronoi tessellation, restricted Voronoi cells

1. Introduction

With the rapid development of modern scanning and data ac-
quisition technologies, a huge amount of point clouds on the
shape of complicated geometric objects are routinely collect-
ed by 3D scanners at an explosive speed. 3D point data is
widely used for a variety of applications, such as reverse en-
gineering, prototyping, and entertainment industry. Raw point
clouds usually involve noise, redundancy, incompleteness, and
uneven distributions, negatively affecting the performance of
downstream operations. Hence, resampling the acquired raw
data into a noise-free dataset, which is evenly distributed and
well represents the underlying shape, has become an important
preprocessing stage for point cloud based geometric processing
applications.

Most recent attempts have been focused on providing high-
quality isotropic point cloud resampling techniques. In many
existing methods, the quality of created sampling data points
heavily relies on the input data. Uneven distributions are usu-
ally introduced in the resampling results when the input point
sets are locally sparse or distribute unevenly. Anisotropic re-
sampling, which aims to generate point distributions following
given tensor fields such as curvature, provides a more compact
representation of the underlying surface. Hence, anisotropic
point cloud resampling is more desired in many applications,
such as surface approximation and free-from surface modeling.

As a counterpart of point cloud resampling, surface remesh-
ing has received considerable attention over the past few years,
and there has been a flourishing of research in computer

∗ Corresponding author. Email address: Juancao@xmu.edu.cn (Juan Cao)
Part of this work was done while Zhonggui Chen and Juan Cao were visiting
the Department of Mechanical Engineering, Carnegie Mellon University.

graphics and numerical computation community on high qual-
ity isotropic/anisotropic remeshing. Among them, centroidal
Voronoi tessellation (CVT) is a popular technique that has been
successfully applied to isotropic/anisotropic remeshing. By
minimizing a tailored energy function, CVT based remeshing
methods are capable of producing well-shaped elements while
preserving the given shape faithfully. Despite the success of
CVT methods in remeshing, there remain difficulties in extend-
ing them to point cloud resampling. In CVT based surface
remeshing techniques, the restricted Voronoi diagram (RVD),
i.e., the intersection between a 3D Voronoi diagram and an in-
put surface mesh, is required. Nevertheless, the underlying sur-
face of a point cloud is generally unknown in advance. We no-
tice that the Voronoi diagram can be computed locally as long
as the underlying local surface is available. Based on this ob-
servation, we can approximate the underlying surface by using
tangent planes and compute the Voronoi diagram restricted on
them. This approximation gives continuous geometric regions
rather than a discrete set of points for the computation of CVT,
and enables us to apply the CVT methods to point cloud resam-
pling. Based on the above idea, we propose a versatile CVT-
based framework for uniform/weighted or isotropic/anisotropic
point resampling in this paper; see Figure 1. To the best of
our knowledge, this is the first study to address the problem of
anisotropic point cloud resampling. The specific contributions
of this paper are as follows:

• We provide an extension of the CVT energy function de-
fined on point clouds. The surface represented by a point
cloud is approximated by a set of tangent planes, and the
RVD is computed as the intersection of the Voronoi dia-
gram of resampling points and tangent planes. Specifical-
ly, a regular octagon centered at a resampling point is used
to represent the tangent plane. The size of the octagon is

Preprint submitted to Computer-Aided Design May 11, 2018

© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/

(a) (b) (c)

(d) (e)

Figure 1: CVT-based isotropic and anisotropic resampling results of an un-
structured point could. (a) Input point cloud; (b) uniform resampling; (c)
weighted resampling; (d) anisotropic resampling; and (e) Lp resampling result.

adaptively determined to enable fast computation of RVD
and robust evaluation of our energy function.

• Effective optimization methods coupled with an improved
initialization algorithm are presented to minimize the ener-
gy function efficiently, leading to high-quality resampling
results with isotropic or anisotropic distribution. By con-
verting the discrete point cloud into a set of continuous
planes, the Lloyd’s method is used to generate evenly s-
paced points according to a given density function, de-
spite the sparse and uneven distributions in the input point
cloud. The BFGS method, which cannot be directly ap-
plied to minimization of the energy function, is tactfully
incorporated into our optimization framework to generate
anisotropic resampling results.

• Our resampling method can effectively remove noise and
fill holes or preserve boundaries of the point cloud. The
computation time mainly depends on the number of resam-
pling points, thus it scales up very well to input datasets
with millions of points. Furthermore, owing to the dual
relationship between the restricted Voronoi diagram and
the restricted Delaunay triangulation, our method natural-
ly yields a high-quality surface mesh from the resampling
points, providing a direct method for remeshing the under-
lying surface without a costly surface reconstruction.

The remainder of this paper is organized as follows. After
reviewing related previous work in Section 2, we give our ob-
jective function in Section 3. We then describe details of our al-
gorithm in Section 4. Implementation details and experimental
results are shown in Section 5. Finally, we close with discus-
sions and limitations in Section 6.

2. Related Work

Here, we only review some closely related resampling meth-
ods for point clouds and the CVT methods. For a more com-
prehensive review on methods of filtering 3D point clouds, we
refer the readers to [1].

Simplification methods. Simplification is a commonly used
tool for efficiently reducing abundances of geometric data.
There have been a lot of studies focusing on mesh simplifica-
tion [2, 3], and some analogous methods can be applied to point
cloud simplification [4]. The goal of point cloud simplification
is to find a point cloud X with a target sampling rate that min-
imizes the distance between the surfaces represented by X and
the input point dataset P. However, due to the discrete nature
of the data, it is not easy to measure the distance between two
point clouds. Song and Feng [5] approximated the local shapes
of a point cloud by tangent planes, and defined the objective
function as the sum of squared distances between the resam-
pled points and the tangent planes, which is then minimized
by iteratively clustering the data and selecting a representative
point for each cluster. Based on a mean-shift clustering scheme,
a curvature-aware resampling method was proposed [6]. To
improve the efficiency and quality of simplification, a hierar-
chical cluster tree was adopted in [7]. Shi et al. [8] employed
the k-means clustering algorithm to group points together and
choose representative points. Another error metric based on a
Hausdorff distance of principal curvature vectors was proposed
in [9]. Point cloud simplification mainly focuses on how to p-
reserve the surface shape represented by the point cloud, rather
than the distribution of the output points, leading to a low level
of local uniformity in the resampling results.

Consolidation methods. The raw data points acquired by a
scanner usually contain noises and outliers, making the down-
stream reconstruction difficult. Consolidation is a process to
massage the point set into the surface where it was sampled
from, by removing noises and outliers [10, 11, 12]. These con-
solidation methods usually resample point sets to avoid point
redundancy or under-sampling problem. Alexa et al. [10] re-
constructed a surface from a point set using the moving least
squares method, where the point with the smallest contribution
to the reconstructed shape is repeatedly removed. Lipman et
al. [13] proposed a locally optimal projection (LOP) method,
which approximates the shape of the raw dataset by a number
of uniformly distributed points. To deal with non-uniform dis-
tributions in raw data, Huang et al. [14] developed a weighted
locally optimal projection operator (WLOP). Liao et al. [15]
further considered both spatial and geometric feature informa-
tion of the point clouds and proposed a feature-preserving lo-
cally optimal projection operator. Another edge-aware point set
resampling method was given in [16]. It first resamples away
from the edges using an anisotropic LOP operator, and then
progressively resamples the points near the edges. Preiner et
al. [17] presented a continuous formulation of the WLOP oper-
ator and achieved a significant acceleration. LOP operator and
its variants work on adequately dense raw datasets, but they
suffer more or less from non-uniform distributions. In addi-
tion, they generally target for an even point distribution and do

2

not have any control over density distribution of the resampling
points.

Sampling methods. Point sampling is one of the core al-
gorithms in computer graphics. A lot of methods have been
proposed to generate distributions with blue noise properties
on a meshed surface [18, 19, 20, 21]. Some of them can al-
so be directly applied to resampling point clouds lying near a
surface [18, 20]. While blue noise properties are desirable in
many applications such as stippling and rendering, in the con-
text of surface remeshing, uniform distributions are generally
preferred for generating high-quality isotropic remeshing re-
sults. A recent point cloud resampling method based on the
Gaussian-weighted graph Laplacian [22] is capable of making
the resultant point distribution conformal to a target density dis-
tribution while achieving good local uniformity between points.
However, this algorithm runs in O(N log N), where N is the
number of the resampled points. The time increases signifi-
cantly when N gets large. In this paper, we propose an effi-
cient method that constructs high-quality isotropic/anisotropic
resampling results of a point cloud in a time complexity de-
pending only linearly on the target number of points.

CVT methods. A CVT is a particular type of Voronoi tessel-
lation whose generating points coincide with the centroids of
the corresponding Voronoi regions. It has been used in a wide
scope of applications, ranging from computational sciences to
engineering [23]. In computer graphics, CVT based methods
have been a promising tool for generating high-quality surface
and volume meshes. The Lloyd’s method [24] is the most wide-
ly used to generate CVTs, due to its simplicity. But it converges
slowly for large-scale problems. A quasi-Newton method was
adopted in [25] to speed up the rate of convergence. CVT
methods can also be applied to surface meshing by resorting
to parameterization [26] or efficient algorithms of computing
Voronoi diagrams restricted to surfaces embedded in 3D [27] or
high dimensional spaces [28]. By incorporating a tensor field
and an Lp norm into the CVT objective function, the optimized
Voronoi cells align their axes with the given tensor field, result-
ing in an anisotropic surface/volume mesh [29]. CVT meth-
ods relying on the exact computation of restricted Voronoi di-
agrams on continuous domains are capable of achieving well-
separateness between points in the resultant point distribution.
On the other hand, discrete CVTs, such as k-means clusters, are
greatly affected by non-uniform distributions in raw data.

In this paper, the restricted Voronoi diagram on a point cloud
is computed as the intersection between the Voronoi cells of the
resampling points and a set of disks centered at the resampling
points. Thus existing CVT objective functions can be defined
and efficiently minimized over point clouds. It removes the ef-
fect of non-uniform distributions in point clouds and leads to
high-quality isotropic/anisotropic resampling results.

3. Formulation of Objective Function

Let X = {xi}
n
i=1 be a set of seed points on a given domain

Ω ⊂ Rd, then a centroidal Voronoi tessellation corresponds to
a minimizer of the objective function, which has a general for-

No

Input: an
unstructured
point cloud

Initial sampling

Construct RVC

Optimize point
positions

Compute tangent
planes

Pull back to
the point cloud

?

Yes

Yes No?

Output：
resampling

points

0i ←

maxi I>

maxj J>

0j ←

j + + i + +

Figure 2: Algorithm overview of CVT-based point resampling.

mulation as follows:

E(X) =

n∑
i=1

∫
Ωi

ρ(x)ψ(x, xi)dσ, (1)

where Ωi = V(xi)∩Ω is the Voronoi cell V(xi) of xi restricted to
the domain Ω, ρ(x) is a density function, and ψ(x, y) is a metric
defining distance between points x and y. The minimizers of
the CVT objective function correspond to different point distri-
butions, depending on the choice of the distance metric ψ(·, ·).
A typical case is ψ(x, xi) = ||x − xi||

2, which results in isotropic
point distributions on Ω. For more details on the theory of CVT,
we refer readers to a comprehensive survey paper [23].

Extending the computation of CVTs in the context of point
cloud resampling is not straightforward, as the underlying sur-
face is unknown in general. In this paper, we settle for com-
puting the intersection of Voronoi cells and an approximation
of the underlying surface. Specifically, we locally approximate
the underlying surface at the point xi by its tangent plane τi,
which is computed as the least squares fitting plane of the k-
nearest neighbors of xi in the input point cloud. Then, we lo-
cally compute the restrict Voronoi cell (RVC) for each point xi

as the intersection of the 3D Voronoi cell V(xi) and its tangent
plane τi. The CVT objective function is therefore modified as
follows:

E(X) =

n∑
i=1

∫
V(xi)∩τi

ρ(x)ψ(x, xi)dσ. (2)

In the next sections, we will employ different distance met-
rics to generate desired point distribution of resampling results
and describe our algorithms of optimizing the corresponding
objective functions.

4. Algorithm of CVT-Based Point Resampling

Our goal is to provide a versatile framework for generating
a point cloud with an isotropic/anisotropic distribution while

3

(a) (b) (c) (d) (e)

Figure 3: Initial sampling. (a) Input point cloud with 35K points; (b) initial sampling result by randomly choosing 5K points from (a); (c) an optimized result after
applying 10 Lloyd’s iterations to (b); (d) initial sampling result according to the areas of RVCs; and (e) a result after applying 10 Lloyd’s iterations to (d).

well approximating the underlying shape of a given raw point
dataset. Our CVT-based algorithm takes an unstructured point
cloud P = {pi}

m
i=1 as input, with a density function ρ(x), and a

desired point number n. Starting from the raw point cloud, our
algorithm proceeds as shown in Figure 2.

(1) In the initialization stage, n points {xi}
n
i=1 are randomly

sampled from the raw point cloud according to a density
function.

(2) For each sampling point xi, we estimate its tangent plane
by computing the least squares fitting plane of its k-nearest
data points.

(3) We locally compute Voronoi cells restricted to the tangent
planes.

(4) Sampling points are relocated on each local tangent plane
suggested by the Lloyd’s method or a gradient-based opti-
mization method. We repeat Steps (3)-(4) Jmax times with-
out changing local tangent planes.

(5) As the updated sampling points may lie a litter far away
from the underlying surface, these points are pulled back
onto the underlying surface.

The distribution of the resampling points is gradually improved
by iteratively running Steps (2)-(5). In other words, point po-
sitions and their tangent planes are alternatively updated. The
algorithm terminates upon either of the following two criteria:
convergence occurs, i.e., the maximum distance moved by any
point in an iteration falls below a preset threshold, or a prede-
termined maximum number of iterations is reached. Details of
the algorithm is given as follows.

4.1. Initialization

A straightforward initialization of our algorithm is to ran-
domly sample n points from the point cloud P, which is greatly
affected by the distribution of the input points and results in
an initial point set that is inconsistent with the target density
function ρ(x); see Figure 3(b) for an example. To speed up the
convergence of our iterative algorithm, we here propose a more
sophisticated algorithm for initialization as follows.

1. A point set {xi}
n
i=1 of size n is randomly chosen from the

input data P and its 3D Voronoi diagram is computed.

ix

iτ

r
iδ

jx

Figure 4: RVC computation: data points and resampling points are marked in
gray and blue, respectively.

2. For each point xi, we compute its tangent plane τi. In
particular, for a point xi, we find its k nearest neighbors
{pi j }

k
j=1 from the point cloud P and compute the plane τi

that best fits the samples {pi j }
k
j=1 in the least-squares sense.

3. We compute the restriction of Voronoi cell V(xi) onto the
corresponding tangent plane τi. Note that, the computa-
tion of RVC is non-trivial, whose details will be given in
Section 4.2. If no confusion arises, we will use the same
notation τi for both the tangent plane and the RVC (i.e.,
the cropped tangent plane) of the point xi.

4. The weighted area for each RVC τi, denoted by Aw(τi),
is computed as Aw(τi) = |τi|

∑k
j=1 ρ(pi j)/k, where |τi| is the

area of RVC τi. Then, n points are randomly sampled from
the RVC set {τi}

n
i=1, with the probability of selecting a RVC

τi proportional to Aw(τi)/
∑n

i=1 Aw(τi).

5. The newly sampled points may deviate from the underly-
ing surface, and will be pulled back to the surface accord-
ing to the method described in Section 4.3. The pulled
back point set, also denoted by {xi}

n
i=1, will be the initial

sampling points for our method.

Note that, our initialization method solely relies on the densi-
ty functions. Hence, the distribution of the resampling points
is independent of the distribution of the input data points. Fig-
ure 3 shows resampling results with a constant density function.
We can see that the points obtained by random initialization are
clustered heavily on the ear region of the model, even after ap-
plying Lloyd relaxation. By contrast, our method generates a
better initialization, leading to a more uniform distribution af-
ter applying only a few Lloyd iterations.

4

4.2. RVC computation

To obtain the Voronoi cells, one needs to first build the 3D
Delaunay triangulations of the point set {xi}

n
i=1. In this paper,

we adopt the clipping method [28] to compute the RVD for
every point, while avoiding the high computational cost asso-
ciated with computing the 3D Voronoi cells of the resampling
points. The algorithm is based on the observation that Voronoi
cell V(xi) is the intersection of half-spaces, bounded by the bi-
sectors of point pairs (xi, x j). In particular, RVD of xi is ob-
tained by clipping the tangent plane τi by the bisectors of all
point pairs (xi, x j), j ∈ 1, ..., n, j , i.

In our implementation, the tangent plane τi of xi is replaced
with an octagon of radius r and centered at xi, denoted by δr

i ,
where r is set to be the average distance between xi and its six n-
earest neighbors in resampling set X; see Figure 4. The benefits
of this substitution are twofold.

(1) It makes the computation of the energy function stable. S-
ince some Voronoi cells are unbounded, it may lead to a
RVC with infinite area if we use the unbounded tangen-
t plane for the RVC computation. As shown in Figure 4,
the tangent plane τi could be nearly parallel to the bisec-
tor of (xi, x j) on highly curved regions, which will result
in a RVC with a very large area and an improper approxi-
mation of the underlying surface. Thus it will be difficult
or even impossible to compute and minimize the energy
function in Equation (2).

(2) It accelerates the aforementioned clipping algorithm.
When implementing the clipping algorithm, we only need
to clip the octagon δr

i by bisectors of xi and the points
x j with distances less than 2r, as the rest bisectors have
no contribution to the clipping results. We use the
NanoFLANN library [30, 31] for the efficient neighbor
searching within a radius bound.

Note that the computation of a RVC is independent on the oth-
ers, thus it can be easily parallelized. RVCs shown in Figure 5
are obtained by computing the intersections between the disks
δr

i and their corresponding Voronoi cells. The RVCs may not
cover the underlying surface of the input point cloud when the
points are unevenly distributed, but they will gradually reduce
the gaps while the point positions are being optimized.

4.3. Optimization

This section describes the minimization of energy functions
associated with different distance metrics ψ(·, ·) defined in Sec-
tion 3. In particular, the Lloyd’s method and the BFGS method
are adopted to generate isotropic and anisotropic resampling re-
sults, respectively.

4.3.1. Lloyd’s method
One prevalent method used for computing isotropic CVTs is

the Lloyd’s method [24], which interleaves moving each point
to the centroid of the corresponding Voronoi cells and recom-
puting the Voronoi tessellation, until certain stopping criterion

(a) (b)

0 20 40 60 80 100
0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68 E(X)

Iteration no.

(c)

Figure 5: Lloyd’s method. (a, b) The RVCs before and after Lloyd’s relaxation;
and (c) the plot of CVT energy function versus the iteration number of Lloyd’s
relaxation.

is met. We follow a similar approach by alternatively optimiz-
ing the point positions and updating RVCs. However, we up-
date the points in a slightly different way. In traditional restrict-
ed CVT computation, the centroids of restricted Voronoi cells
are restricted to a given mesh/surface. However, the underlying
surface is unknown in our application. A straightforward way
of computing RVC on an input point cloud, i.e., the k-means
clustering method [8], is to collect the points of the input data
inside a Voronoi cell and compute their discrete centroid, lead-
ing to sampling results heavily relying on the distribution of the
input data. To achieve better results, we compute the centroid
of each Voronoi cell restricted to a tangent plane:

oi =

∫
V(xi)∩τi

ρ(x)xdσ∫
V(xi)∩τi

ρ(x)dσ
. (3)

The point xi is then moved to oi. Note that, the density function
ρ(x) is only defined over the input point cloud. To compute the
integral terms in the above equation, we need first extend the
definition of the density function to RVCs. To do this, we ap-
proximate the density at each vertex of RVC by the average of
densities at its k-nearest points in the input point cloud. After
triangulating each RVC, the density at any point on a RVC can
then be computed by linear interpolation. With the interpolated
density function in hand, the integral terms in Equation (3) can
be computed numerically by using a quadrature rule on trian-
gles, e.g., the Gaussian quadrature on triangles.

4.3.2. Pulling back
The centroid of each RVC obtained above is on the tangent

plane, and may deviate from the underlying surface. We there-
fore pull the centroids back to the underlying surface. In partic-
ular, we find a new plane, still denoted as τi, that best fits xi’s
k-nearest points from the input point cloud. Then, xi is project-
ed onto the plane τi. Once the positions of all xi are updated,
we will compute the Voronoi cells restricted on the new tan-
gent planes and start the next iteration until convergence or the
termination condition is met.

Examples of Lloyd’s relaxation are shown in Figure 3 and
Figure 5. Figure 5 shows a plot of the CVT objective function

5

versus the iteration number of Lloyd’s relaxation. We can see
that the CVT objective function generally decreases, with oscil-
lations occurring after updating tangent planes and RVCs. This
is because the estimated tangent planes do not change smoothly
with respect to the positions of xi.

4.3.3. BFGS method
Lloyd’s relaxation is a gradient decent algorithm with lin-

ear convergence, and there are many more advanced ways of
numerical optimizations for CVT energy functions. Among
them, the BFGS method [32], which achieves superlinear con-
vergence, is the most commonly used one for accelerating the
CVT computation. Traditional Newton’s method, though con-
verging quadratically, is not suitable for CVT computation, due
to the prohibitive cost of computing and storing the inverse Hes-
sian matrix. Whereas, BFGS belongs to the family of quasi-
Newton methods, which uses accumulated gradient information
to approximate the inverse Hessian. However, BFGS cannot be
directly used for the acceleration of the minimization of our en-
ergy function. It can be applied successfully only if the energy
function is at least C2 continuous. As pointed out above, the
CVT objective function in Equation (2) is not smooth, as the
integral domains change discontinuously. This phenomenon is
radically different from the case of the classical CVT energy
optimization. As a C2 continuous function, the CVT energy
can be monotonically optimized by both the Llody’s relaxation
and the BFGS methods.

Although the BFGS method is not suitable for improving
the convergence rate of the Lloyd’s method in our case, we
still resort to it for the minimization of the anisotropic CVT
energy function when the Lloyd’s method is no longer appli-
cable. To facilitate the discussion, we let ρ(x) ≡ 1 and as-
sume that the distance metric in Equation (2) has the form
ψ(x, y) = ||M(x)(x − y)||pp, where ||.||p denotes the Lp norm
and M(x) is a given matrix defining a tensor field G(x), i.e.,
G(x) = M(x)T M(x). Then, the energy function (2) becomes:

E(X) =

n∑
i=1

∫
V(xi)∩τi

||M(x)(x − xi)||
p
pdσ. (4)

The minimization of the above energy function leads to an
anisotropic sampling with respect to the tensor field G(x). In
order to run the BFGS method for the minimization, we make
the above energy function a smooth function by fixing the tan-
gent planes during the iterations. That is, we only use the BFGS
method to compute the new point positions and their corre-
sponding RVCs on the current tangent planes. After we update
the tangent planes, we restart the BFGS method. Thus, it is not
necessary to run the BFGS method until convergence as we on-
ly need to get an intermediate result. In our experiments, we set
the maximum number of iterations for the BFGS method to be
5, i.e. Jmax = 5 in our algorithm as shown in Figure 2. A back-
tracking line search is used to determine a step size that reduces
the objective function.

Computing E(x) and ∇E(x). The BFGS method requires the
evaluations of the energy function E(x) given in Equation (4)

xi

c1

c3

c2

Figure 6: Computing E(x) and ∇E(x) on a restricted Voronoi cell. The RVC
of xi (marked in orange) consists of a set of triangles obtained by clipping a
octagon (marked in gray), with bisector planes between xi and its neighbor
points.

and its gradient ∇E(x). Here we give the closed-form expres-
sions for computing E(x) and ∇E(x), which are the counterparts
of the computation of anisotropic CVTs on surface meshes [29]
now applied to tangent planes. We refer the readers to [29, 33]
for the detailed derivations.

Recall that the RVCs are the intersections between the 3D
Voronoi cells and the octagons lying on tangent planes and cen-
tered at the resampling points. Each RVC is a set of triangles
obtained by using the clipping method [28]. Suppose T is one
triangle of the RVC of xi with vertices {c1, c2, c3} as shown in
Figure 6. We assume that the matrix M(x) is constant over T ,
denoted by MT , and is computed by averaging the correspond-
ing matrices at the vertices of T . Then the energy E(x) over T
is given by:

ET (X) =

∫
T
‖MT (x − xi)‖

p
p dσ

=
|T |(
2+p

2

) ∑
α+β+γ=p

uα1 ∗ uβ2 ∗ uγ3,

where


u j = MT

(
c j − xi

)
,

u1 ∗ u2 =
[
x1x2, y1y2, z1z2

]t ,
uα = u ∗ u ∗ · · · ∗ u (α times) ,
u = x + y + z.

The gradient of ET (X) relative to X is obtained by the chain
rule:
dET (xi, c1, c2, c3)

dX
=

dET

dxi
+

dET

dc1

dc1

dX
+

dET

dc2

dc2

dX
+

dET

dc3

dc3

dX
.

Finally, we get the energy E(x) and its gradient ∇E(x) by sum-
ming the contributions ET (X) and ∇ET (x) of each triangle T .

5. Implementation and Results

In this section, we present the results of our CVT-based
method applied to isotropic/anisotropics resampling of point
clouds and show its application to surface reconstruction.
We experimented with both synthetic and real world dataset-
s. In order to evaluate our resampling results, we also com-
pare our method with the state-of-the-art approaches, includ-
ing the WLOP method [14], and the graph Laplacian based

6

(a) (b) (c)

(d) (e)

Figure 7: Comparisons with the state-of-the-art methods. (a) Input point cloud
with 110K points; (b) result from the WLOP method [14], σ = 0.182; (c) result
from the k-means method, σ = 0.124; (d) result from the graph Laplacian based
method [22], σ = 0.037; and (e) our CVT-based result, σ = 0.052.

method [22]. All tests are executed on an Intel Core i7-6700k
with 16GB RAM, running the multi-threading implementation.
The Core i7-6700k is a quad core processor with 2 simultane-
ous multi-threading contexts per core.

5.1. Uniform resampling
Let the metric ψ(x, y) be the squared Euclidean distance be-

tween two points x and y, i.e., ψ(x, y) = ||x − y||2, and density
function ρ(x) ≡ 1, then the minimization of the energy function
in Equation (2) leads to a uniform point cloud. We compare our
CVT-based method to the aforementioned state-of-the-art ap-
proaches, using the cow model shown in Figure 7. The number
of the input data points is 110K, while the output point number
is set to 5K. To achieve fair results, we use implementation-
s provided in [14, 22] and conduct all the experiments on the
same machine. To give a rough quantitative measure of the uni-
formity of points, we adopt the standard deviation of distances
to the nearest neighbors at resampling points, which is denot-
ed by σ. The average value of the distances is normalized.
We also implement a discrete version of the Lloyd’s method,
which moves each resampling point to the center of its asso-
ciated cluster of the data points as the k-means algorithm [8]
does. From Figure 7 it can be seen that the WLOP method [14]
and k-means method fail to generate uniform point distribution-
s, as they suffer from the non-uniform distribution of the input
point cloud. Both the graph Laplacian based method [22] and
our CVT-based method is capable of generating uniform resam-
pling results. Our method is much more efficient than the graph
Laplacian based method [22], as we will show in the next para-
graph.

Running time comparison. Our iterative resampling algo-
rithm involves repeatedly querying the k-nearest neighbors of a
resampling point among the input point cloud. To optimize the
queries, the input point cloud is organized in a kd-tree by us-
ing the NanoFLANN library [30, 31] in the initialization stage,

0 1 2 3 4 5 6 7 8 9 10
100

101

102

103 CVT-Based
WLOP
Graph Laplacian

Time (in seconds)

Input point no. (106)

(a)

1 2 3 4 5 6 7 8 9 10 11
100

101

102

103

104 CVT-Based
WLOP
Graph Laplacian

Output point no. (104)

Time (in seconds)

(b)

Figure 8: (a) Running time against the number of input points, ranging from
10K to 10M, with a fixed output point number (m = 10K); and (b) running time
against the number of output points, ranging from 10K to 110K, with a fixed
input point number (n = 110K).

of which time complexity is O(n log(n)) with respect to the
number of input data n. Then, in each iteration, the k-nearest
neighbors of each resampling point can be found in O(log(n))
time. In total, the running time of our CVT-based algorithm is
O(n log(n) + I · m · log(n)), where n is the number of the input
points, I is the iteration number, and m is the number of re-
sampling points. Note that, the time complexity is O(n log(n))
with respect to the number of input points n and linear with re-
spect to the number of output points m. We might think that
the computation time mainly depends on the number of input
points at the first glance, as n is usually much larger than m in
practical applications. However, through experiments, we can
show that the total computation time of our algorithm is mainly
determined by the number of output points m when the itera-
tion number is fixed. The kd-tree construction is very efficient
in practice by using the NanoFLANN library, whose contribu-
tion to the total running time is small. We test our algorithm
on a sequence of point cloud datasets with different resolutions
while fixing the output point number (m = 10K) and iteration
number (I = 35). The number of points in the input point cloud
varies from 10K to 10M. The plot of running time against the
input point number is shown in Figure 8(a). When the num-
ber of the input points increases from 10K to 10M, the running
time for our CVT-based method, the WLOP method [14], and
the graph Laplacian method [22] is increased by 4.3, 226.6, and
71.7 seconds, respectively. We also generate resampling result-
s with different sizes from the same point cloud. Figure 8(b)
reports the running time of our CVT-based method, the WLOP
method [14], and the graph Laplacian based method [22]. We
can see that our algorithm is much more efficient than the other
two methods when the resampling point number m increases.

5.2. Weighted resampling

Given an input point cloud and a user-specified density func-
tion ρ(x) defined over it, we can also generate a resampling
result adapted to the given density function. In our experi-
ments, the density function is set to ρ(x) = |κ̄1(x)| + |κ̄2(x)|,
where κ̄i(x) = max(|κi(x)|, 10−4) and |κi(x)|, i = 1, 2, are the t-
wo principal curvatures at x, respectively. Here, the principal
curvatures are truncated by 10−4 to avoid the instability in nu-
merical calculation. We estimate the curvatures at each data

7

(a)

(b)

Figure 9: Weighted resampling. (a) Input point cloud (3M points) with color-
coded density function derived from the discrete curvatures of the point cloud
(red indicates the maximum value and blue indicates the minimum value); and
(b) weighted resampling result (50K points) adapted to the density function,
obtained after 35 Lloyd’ iterations in 16.4 seconds.

point using CGAL’s implementation [34]. Moreover, we use
the Laplacian filter to smooth the discrete curvatures such that
the density function varies smoothly. Figure 9 shows an adap-
tive resampling result of scan data of a dragon model from [35].
Our method resamples it from 3M to 50K points in 16.4 second-
s. Our resampling result adapts to the given density function by
distributing fewer (more) points in flat (curved) regions.

5.3. Anisotropic resampling

To obtain anisotropic resampling results, we minimize the
energy function in Equation (4), where the tensor field G(x) =

MT (x)M(x) at each point of the input data should be spec-
ified. In our experiments, we use the curvature tensors as
the tensor field. Let Ui(x) be the principal directions and
N(x) be the surface normal at x. Then, we set M(x) =

Diag(
√
κ1(x),

√
κ2(x), 0)Q(x)T , where κi(x) are the principal

curvatures, and Q(x) = [U1(x),U2(x),N(x)]. Here, the cur-
vatures, principal directions and surface normals are estimat-
ed by the aforementioned CGAL’s implementation [34]. Fig-
ure 10 shows an example of anisotropic resampling using an
anisotropic L2 norm (i.e., p = 2 in Equation (4)), where resam-
pling points tend to gather along the high-curvature directions
and vice versa. It also demonstrates the feasibility of the combi-
nation of our alternative optimization framework and the BFGS
method for energy minimization.

Note that if the axes of anisotropy have the same length,
the minimizer of the energy function in Equation (4) under

(a) (b)

Figure 10: Anisotropic resampling. (a) Resampling result adapted to curvature
tensor field; and (b) L8 resampling result.

(a) (b) (c)

Figure 11: Noise depression. (a) A noisy input with 180K points; (b) result with
10K points from the graph Laplacian based method [22]; and (c) our result with
10K points.

L2 norm corresponds a “honeycomb” pattern of RVCs. Nev-
ertheless, minimizing Equation (4) with a large value of p lead-
s to rectangle-shaped RVCs [29]. As a consequence, the re-
sampling points have a lattice-like distribution, with lattice di-
rections aligning with the tensor field. Figure 10(b) shows a
point resampling result using an L8-CVT energy function with
M(x) = Diag(1, 1, 0)[U1(x),U2(x),N(x)]T . Though the lengths
of the two anisotropic axes are set to the same value, the direc-
tions of the axes guide the point distribution, which is entirely
different from the L2 case.

5.4. Noise depression
During optimization the resampling points are repeatedly

projected onto a plane that best fits their k-nearest neighbors
at the input point cloud. This procedure is similar to that in a
standard point cloud smoothing approach, in which the points
are projected onto the average plane of neighbors as one round
of smoothing. Hence, our method presents a good anti-noise
ability when the input data contains moderate levels of noise,
as shown in Figure 11. In contrast, the result from the graph
Laplacian based method [22] is more easily affected by noise.
For input data with large scale noise, we can apply our algorith-
m after several rounds of smoothing to achieve visually more
pleasant results.

5.5. Boundary handling
Note that, by simply following the procedure presented

above without any special processing on the boundaries, the

8

(a) (b)

(c) (d)

Figure 12: Boundary handling. (a) Input point cloud; (b) detected boundary
points (in purple) and initial resampling points (in blue); (c) resultant RVCs
after Lloyd’s relaxation and projected points (in red) on the boundary; and (d)
final resampling result.

RVC of a resampling point at the boundary usually contains a
region beyond the scope of the underlying surface. Thus, the
corresponding centroid tends to drift away from the underly-
ing surface. Here we propose a simple method to handle this
problem.

First, the boundary points of the input point cloud are ex-
tracted, by using the boundary point detection method provided
in the point cloud library (PCL) [36]. The basic steps are as
follows: (1) For each point p in the point cloud P, find the
plane τ(p) which best fits its k-nearest neighbors from P. (2)
The point p and its k-nearest neighbors Nk(p) are projected on-
to the plane τ(p). (3) Obtain k vectors on τ(p) by connecting
the projection of p with the projections of its k-nearest neigh-
bors, respectively. (4) Find the maximum turning angle be-
tween each pair of adjacent vectors. If the maximum turning
angle is greater than a threshold, then p is considered to be a
boundary point. Figure 12(b) shows the boundary points de-
tected by the above method. Second, the boundary points are
considered as virtual resampling points, which participate in the
RVC computation but are fixed during optimization. By this
way, RVCs of real resampling points and their centroid will al-
ways stay within the regions covered by the underlying surface,
see Figure 12(c). Finally, as a post-processing step, we further
resample the boundary points to obtain a consistent point dis-
tribution on the boundary as follows. For each pair of adjacent
resampling points xi and x j that are adjacent to the boundary
(namely, their RVCs share a common bisector with the virtual
resampling points), see Figure 12(c), the middle point of the
segment xix j is projected onto the line that best fits its k-nearest
points from the boundary point set. The projected point is in-
cluded in the resampling point set only if its distance to the
nearest resampling point is greater than ||xi − x j||/2.

(a) (b)

Figure 13: Hole filling. (a) Input point cloud with holes; and (b) resampling
result with holes filled.

5.6. Hole filling

Our algorithm can automatically infer substitute regions for
the missing parts and place an appropriate number of resam-
pling points on it. As based on local linear approximation, our
algorithm works well for holes which can be repaired by a sim-
ple surface extrapolation, as shown in Figure 13, but it has prob-
lem in recovering highly curved regions. A possible solution to
improve the hole filling results is to use high-order surfaces, in-
stead of the linear plane, to locally approximate the input data.
Another difficulty is that it is hard to distinguish hole bound-
aries from the open boundaries that the users want to preserve.
For simplicity, we just let the users decide which holes need to
be filled.

5.7. Surface reconstruction

As a by-product, the RVCs generated by our algorithm gives
a piecewise linear approximation to the underlying surface, as
shown in Figures 5 and 12. This polygon soup representation
may be sufficient for the application of geometric proximity
analysis and 3D visualization. Furthermore, the obtained poly-
gon soup can easily be converted into a widely used triangular
mesh, using the duality between RVCs and restricted Delaunay
triangulation. Figure 14 shows the reconstructed surface mesh-
es of point clouds used in this paper. Note that the surface mesh-
es constructed by using only the duality of RVCs and restrict-
ed Delaunay triangulation may contain holes and non-manifold
faces. A clean and orientable 2-manifold mesh can be recov-
ered by using a manifold extraction algorithm [37]. Based on
our resampling results, we get the isotropic/anisotropic mesh-
ing results of the point clouds directly, which is more efficient
than reconstructing the surface from the point cloud first and
then remeshing the surface.

6. Limitation and Discussion

We have generalized the definition of the CVT energy
function to point clouds. Based on the generalized energy
function, we propose an efficient algorithm for energy func-
tion minimization and provide a versatile CVT-based frame-
work on which we can generate uniform/adaptive or isotrop-
ic/anisotropic point resampling results.

9

Figure 14: Surface reconstruction using the duality between RVCs and restricted Delaunay triangulation. (a) Uniform meshing; (b) non-uniform meshing; (c)
anisotropic meshing; and (d) Lp meshing.

(a) (b)

Figure 15: An example with sharp features. (a) Input point cloud with hidden
sharp features; and (b) resampling result, with the underlying surface rendered
for a better visualization of the locations of the resampling points.

The proposed algorithm assumes that the point cloud is sam-
pled from a smooth surface and is free of outliers and large
scale noise. We locally approximate the underlying surface us-
ing planes. Hence, if the number of resampling points is too
small, especially for curved regions, RVCs will give a poor ap-
proximation to the underlying surface, leading to unsatisfying
resampling results. Besides, our algorithm does not perform
well on models with sharp features, as the estimated tangent
planes at the sharp features are inaccurate. Figure 15 shows a
resampling result of a CAD model, where the sharp features are
not well preserved. If the sharp features are well sampled and
can be clearly detected, we can handle the sharp features in the
same fashion as we do for boundaries. However, it is hard to
detect clear sharp features from a point cloud in practice, due
to the inherent noise and incompleteness in the acquired data.
Integrating robust feature preserving techniques into our resam-
pling framework will be our future work.

Acknowledgements

The research of Zhonggui Chen and Juan Cao was support-
ed by the National Natural Science Foundation of China (No.
61472332, 61572020, 61728206), the Natural Science Founda-
tion of Fujian Province of China (No. 2018J01104), and the
program of China Scholarship Council. The research of Cheng
Wang was supported in part by the National Natural Science
Foundation of China (No. U1605254). The research of Yongjie

Jessica Zhang was supported in part by the PECASE Award
N00014-16-1-2254 and NSF CAREER Award OCI-1149591.

References

[1] X.-F. Han, J. S. Jin, M.-J. Wang, W. Jiang, L. Gao, L. Xiao, A review
of algorithms for filtering the 3D point cloud, Signal Processing: Image
Communication 57 (Supplement C) (2017) 103 – 112.

[2] P. S. Heckbert, M. Garland, Survey of polygonal surface simplification
algorithms, Multiresolution Surface Modeling Course, SIGGRAPH 97.

[3] D. P. Luebke, A developer’s survey of polygonal simplification algorithm-
s, IEEE Computer Graphics and Applications 21 (3) (2001) 24–35.

[4] M. Pauly, M. Gross, L. P. Kobbelt, Efficient simplification of point-
sampled surfaces, in: Proceedings of IEEE Conference on Visualization,
2002, pp. 163–170.

[5] H. Song, H.-Y. Feng, A global clustering approach to point cloud sim-
plification with a specified data reduction ratio, Computer-Aided Design
40 (3) (2008) 281–292.

[6] Y. Miao, R. Pajarola, J. Feng, Curvature-aware adaptive re-sampling for
point-sampled geometry, Computer-Aided Design 41 (6) (2009) 395–403.

[7] Z. Yu, H.-S. Wong, H. Peng, Q. Ma, ASM: an adaptive simplifica-
tion method for 3D point-based models, Computer-Aided Design 42 (7)
(2010) 598–612.

[8] B.-Q. Shi, J. Liang, Q. Liu, Adaptive simplification of point cloud using
k-means clustering, Computer-Aided Design 43 (8) (2011) 910–922.

[9] X. Ma, R. J. Cripps, Shape preserving data reduction for 3D surface
points, Computer-Aided Design 43 (8) (2011) 902–909.

[10] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, C. T. Silva,
Computing and rendering point set surfaces, IEEE Transactions on Visu-
alization and Computer Graphics 9 (1) (2003) 3–15.

[11] S. Liu, K.-C. Chan, C. C. L. Wang, Iterative consolidation of unorganized
point clouds, IEEE Computer Graphics and Applications 32 (3) (2012)
70–83.

[12] J. Wang, K. Xu, L. Liu, J. Cao, S. Liu, Z. Yu, X. D. Gu, Consolidation of
low-quality point clouds from outdoor scenes, Computer Graphics Forum
32 (5) (2013) 207–216.

[13] Y. Lipman, D. Cohen-Or, D. Levin, H. Tal-Ezer, Parameterization-free
projection for geometry reconstruction, ACM Transactions on Graphics
(TOG) 26 (3) (2007) 22.

[14] H. Huang, D. Li, H. Zhang, U. Ascher, D. Cohenor, Consolidation of
unorganized point clouds for surface reconstruction, ACM Transactions
on Graphics 28 (5) (2009) 1–7.

[15] B. Liao, C. Xiao, L. Jin, H. Fu, Efficient feature-preserving local projec-
tion operator for geometry reconstruction, Computer-Aided Design 45 (5)
(2013) 861–874.

[16] H. Huang, S. Wu, M. Gong, D. Cohen-Or, U. Ascher, H. Zhang, Edge-
aware point set resampling, ACM Transactions on Graphics 32 (1) (2013)
1–12.

[17] R. Preiner, O. Mattausch, M. Arikan, R. Pajarola, M. Wimmer, Continu-
ous projection for fast L1 reconstruction, ACM Transactions on Graphics
33 (4) (2014) 47.

[18] A. C. Öztireli, M. Alexa, M. Gross, Spectral sampling of manifolds, ACM
Transactions on Graphics (TOG) 29 (6) (2010) 168.

10

[19] Z. Chen, Z. Yuan, Y.-K. Choi, L. Liu, W. Wang, Variational blue noise
sampling, IEEE Transactions on Visualization and Computer Graphics
18 (10) (2012) 1784–1796.

[20] J. Chen, X. Ge, L.-Y. Wei, B. Wang, Y. Wang, H. Wang, Y. Fei, K.-L.
Qian, J.-H. Yong, W. Wang, Bilateral blue noise sampling, ACM Trans-
actions on Graphics (TOG) 32 (6) (2013) 216.

[21] D.-M. Yan, J.-W. Guo, B. Wang, X.-P. Zhang, P. Wonka, A survey of
blue-noise sampling and its applications, Journal of Computer Science
and Technology 30 (3) (2015) 439–452.

[22] C. Luo, X. Ge, Y. Wang, Uniformization and density adaptation for point
cloud data via graph Laplacian, Computer Graphics Forum 37 (1) (2018)
325–337.

[23] Q. Du, V. Faber, M. Gunzburger, Centroidal Voronoi tessellations: appli-
cations and algorithms, SIAM Review 41 (1999) 637–676.

[24] S. Lloyd, Least squares quantization in PCM, IEEE Transactions on In-
formation Theory 28 (2) (1982) 129–137.

[25] Y. Liu, W. Wang, F. Sun, D. M. Yan, L. Lu, C. Yang, Y. Liu, W. Wang,
B. Lévy, F. Sun, D.-M. Yan, L. Lu, C. Yang, On centroidal Voronoi tes-
sellationenergy smoothness and fast computation, ACM Transactions on
Graphics (TOG) 28 (4) (2009) 101.

[26] P. Alliez, É. C. De Verdière, O. Devillers, M. Isenburg, Centroidal
Voronoi diagrams for isotropic surface remeshing, Graphical Models
67 (3) (2005) 204–231.

[27] D. Yan, B. Lévy, Y. Liu, F. Sun, W. Wang, Isotropic remeshing with fast
and exact computation of restricted Voronoi diagram, Computer Graphics
Forum 28 (5) (2009) 1445–1454.

[28] B. Lévy, N. Bonneel, Variational anisotropic surface meshing with
Voronoi parallel linear enumeration, Proceedings of The 21st Internation-
al Meshing Roundtable (2013) 349–366.

[29] B. Lévy, Y. Liu, Lp centroidal Voronoi tessellation and its applications,
ACM Transactions on Graphics 29 (4) (2010) 1–11.

[30] J. L. Blanco, P. K. Rai, NanoFLANN: a C++ header-only fork
of FLANN, a library for nearest neighbor (NN) wih kd-trees,
https://github.com/jlblancoc/nanoflann (2014).

[31] M. Muja, D. G. Lowe, Scalable nearest neighbor algorithms for high di-
mensional data, IEEE Transactions on Pattern Analysis and Machine In-
telligence 36 (11) (2014) 2227–2240.

[32] J. Nocedal, S. Wright, Numerical optimization, Springer Science & Busi-
ness Media, 2006.

[33] G. Parigi, M. Piastra, Gradient of the objective function for an anisotrop-
ic centroidal Voronoi tessellation (CVT)-a revised, detailed derivation,
arXiv:1408.5622 (2014).

[34] F. Cazals, M. Pouget, Estimating differential quantities using polynomi-
al fitting of osculating jets, Computer Aided Geometric Design 22 (2)
(2005) 121–146.

[35] Stanford computer graphics laboratory.
URL http://graphics.stanford.edu/data/3Dscanrep/

[36] R. B. Rusu, S. Cousins, 3D is here: point cloud library (PCL), in: Pro-
ceedings of the IEEE International Conference on Robotics and Automa-
tion, 2011, pp. 1–4.

[37] D. Boltcheva, B. Lévy, Surface reconstruction by computing restricted
Voronoi cells in parallel, Computer-Aided Design 90 (Supplement C)
(2017) 123–134, SI:SPM2017.

11

